
example_project Documentation
Release 0.1.0

Roie R. Black

September 27, 2017

Contents

1 Development Services 3
1.1 GitHub . 3
1.2 virtualenv . 3
1.3 PyTest . 4
1.4 TravisCI . 5
1.5 AppVeyor . 7
1.6 CoverAlls . 9
1.7 Landscape . 9
1.8 PyPi . 9
1.9 Scrutinizer . 9
1.10 Tox . 10
1.11 Putting all this Together . 10

2 Glossary 11

3 Indices and tables 19

i

ii

example_project Documentation, Release 0.1.0

Contents:

Contents 1

example_project Documentation, Release 0.1.0

2 Contents

CHAPTER 1

Development Services

When you set out to build a significant Python project, you could work alone until your project is ready for release
into the “wild”. You could do that, but you would miss out on a huge benefit you get by making things public long
before it is really ready to go.

There are a bunch of free services you can use to make sure your development is going smoothly as you work through
the design. Tapping into these services can help you spot problems and fix them early in the process. Here are a few
of the free services you can use:

GitHub

This is a big one. Employers are telling us they want to see your work on GitHub, regardless of the programming
language you choose to use for your project. GitHub is free for open-source projects, or you can pay a fee to keep
your projects private if your choose. Alternatively, I set up a private server running a clone of GitHub, called GitLab,
for use by my students as part of their work in my classes. GitLab provides services similar to GitHub from their
project website. You can also install GitLab on a Linux server and host it in your home office using a Dynamic DNS
service. This will allow you to reach your server from anywhere you can get on the Internet. GitLab also offers free
hosting for your project if you do not want to run your own server.

To get your project on GitHub, you sign up for a free account using a username and password.
Your username becomes part of the URL your project will get. For example, I set up an exam-
ple project named example_project for this lecture. GitHub set up a URL for the project at
https://github.com/rblack42/example_project.git. In this URL, my username is rblack42,
and the project name is ‘‘example_project. GitHub_ added the ‘‘.git part.

As you create the project, you have a chance to set up a basic README file, a .gitignore file that is designed for
the programming language you intend to use, and a basic license file. (I use the New BSD license for my projects. By
adding these few files, your project will be ready to clone onto your development system:

$ git clone https://rblack42/example_project.git``
$ cd example_project/

You will end up with a project directory named example_project on your system already set up so Git can manage
it.

virtualenv

If you work on several Python projects on the same development machine, eventually you will run into dependency
issues. You have one package that needs another one to function, and these packages end up needing conflicting

3

https://github.com/
https://github.com/
https://github.com/
https://about.gitlab.com/
https://about.gitlab.com/
https://github.com/
https://about.gitlab.com/
https://about.gitlab.com/
https://github.com/
https://github.com/
http://git-scm.com/

example_project Documentation, Release 0.1.0

versions of each other. Ian Bicking solved this problem by creating the virtualenv package which sets up an isolated
Python environment where you can install only those packages (with correct versions) needed by your project. Fur-
thermore, you can set up a requirements.txt file and list all the packages and versions you need, and let pip
install everything for you. Most serious Python developers use these tools as part of their normal work flow!

As an example, on my Mac I installed virtualenv using this command:

.. code-block:: text

$ pip install virtualenv

Next, I added an alias to my .bash_profile that looks like this:

alias workon='source _venv/bin/activate'

Finally, in my newly cloned project directory, I do this:

~/_projects/example_project$ virtualenv _venv
New python executable in _venv/bin/python2.7
Also creating executable in _venv/bin/python
Installing setuptools, pip...done.

When I want to work on the project, I do this:

~/_projects/example_project$ workon
(_venv)~/_projects/example_project

Notice that the prompt has changed to remind you that you are working in a “virtual environment”. There is a command
to deactivate this environment, but I usually just close the window.

Note: I have a habit of naming some directories with a leading underscore. That makes these names appear at the top
of any directory listing I see, so I can get to it quickly as I navigate around in the file explorer tools.

PyTest

A nice Python package for managing tests is PyTest. Now that we are working in a virtualenv, we can install this
package easily using pip. To demonstrate how the requirements.txt file works, here is the firat line I add to this file in
the new project:

pytest==2.6.4

Then you install it by doing this:

$ pip install -r requirements.txt

Note: If you leave off the version part (‘==2.6.4’), you get the most recent version. After doing that, you should
update your requirements.txt file to reflect the version you actually used in your project. That way, if the project
evolves, you can still install the correct version. You can update your project to use the new version as needed at a
later time.

Something to Test

Now that PyTest has been installed, let’s give it something to test. Normally we keep all tests in a separate directory.
You may or may not decide to release the tests with your project. I feel that releasing the tests is a good idea, since you

4 Chapter 1. Development Services

http://www.ianbicking.org/
https://pypi.python.org/pypi/virtualenv
https://pypi.python.org/pypi/virtualenv
https://pypi.python.org/pypi/virtualenv

example_project Documentation, Release 0.1.0

can find out if there are any problems in unexpected environments by letting your users test things and report back if
any issues pop up!

Here is the first test file, named test_dummy.py. Create a new tests subdirectory for this file:

1 def inc(x):
2 return x+1
3

4 def test_inc():
5 assert inc(3) == 4

Before we run this test, we need to tell PyTest not to look into our virtualenv subdirectory, or else it will try to run tests
we are not really interested in running. To do this, create a pytest.ini file in the project root directory with these
lines:

1 [pytest]
2 norecursedirs = _venv

With this test and control file in place, we can run the test:

$ py.test
================================ test session starts ================================
platform darwin -- Python 2.7.8 -- py-1.4.26 -- pytest-2.6.4
collected 1 items

tests/test_dummy.py .

============================= 1 passed in 0.03 seconds ==============================

Great! Our project is on track with a real (silly) test that works, and we have not even started writing any real project
code yet! Time to let the world know how our project is doing!

TravisCI

TravisCI is a nice free service that works with GitHub to test your project code. You can sign up for this service using
your GitHub credentials, making the process pretty easy! TravisCI will download a list of your public projects from
GitHub and you can select the ones you want to test with this service by clicking on a menu item.

You need to add a new file to the root of your project folder, and commit everything in your project, then push your
changes up to GitHub.

Here is a starter .travis.yml file for this project:

1 language: python
2 python:
3 - "2.7"
4 - "3.4"
5

6 # command to install dependencies
7 install:
8 - pip install -r requirements.txt
9

10 # command to run tests
11 script:
12 - "py.test ."
13

14 after_success:
15 - coveralls

1.4. TravisCI 5

https://pypi.python.org/pypi/virtualenv
https://travis-ci.org/
https://github.com/
https://github.com/
https://travis-ci.org/
https://github.com/
https://github.com/

example_project Documentation, Release 0.1.0

Before we check all of this in to GitHub, we need to see what Git thinks about everything:

$ git status

On branch master
Your branch is up-to-date with 'origin/master'.
Untracked files:

(use "git add <file>..." to include in what will be committed)

.travis.yml
_venv/
pytest.ini
requirements.txt
tests/

nothing added to commit but untracked files present (use "git add" to track)

We do not want the virtualenv directory to end up on GitHub so we edit the .gitignore file to add these lines at
the end:

virtualenv
_venv

Rerun git status to confirm that Git is no longer looking at that directory, then commit and push your changes:

$ git add .
$ git commit -m "initial project setup"
$ git push origin master

After this push, you can navigate to your TravisCI account page and watch the action. Travis will clone your project
into a new virtualenv and run your tests. Depending on the load on their servers, this may take a few minutes.

Here is the last part of what I saw on my build run:

git.checkout
0.05s$ git clone --depth=50 --branch=master git://github.com/rblack42/example_project.git rblack42/example_project
Cloning into 'rblack42/example_project'...
remote: Counting objects: 16, done.
remote: Compressing objects: 100% (10/10), done.
remote: Total 16 (delta 3), reused 12 (delta 3), pack-reused 0
Receiving objects: 100% (16/16), done.
Resolving deltas: 100% (3/3), done.
Checking connectivity... done.
$ cd rblack42/example_project
$ git checkout -qf 8b153311fd5bcdc054dd67e000a0f2e5b849a056
0.01s$ source ~/virtualenv/python3.4/bin/activate
$ python --version
Python 3.4.2
$ pip --version
pip 6.0.7 from /home/travis/virtualenv/python3.4.2/lib/python3.4/site-packages (python 3.4)
install
0.52s$ pip install -r requirements.txt
You are using pip version 6.0.7, however version 6.0.8 is available.
You should consider upgrading via the 'pip install --upgrade pip' command.
Requirement already satisfied (use --upgrade to upgrade): pytest==2.6.4 in /home/travis/virtualenv/python3.4.2/lib/python3.4/site-packages (from -r requirements.txt (line 1))
Requirement already satisfied (use --upgrade to upgrade): py>=1.4.25 in /home/travis/virtualenv/python3.4.2/lib/python3.4/site-packages (from pytest==2.6.4->-r requirements.txt (line 1))
0.34s$ py.test
============================= test session starts ==============================
platform linux -- Python 3.4.2 -- py-1.4.26 -- pytest-2.6.4
collected 1 items

6 Chapter 1. Development Services

https://github.com/
http://git-scm.com/
https://pypi.python.org/pypi/virtualenv
https://github.com/
http://git-scm.com/
https://travis-ci.org/
https://pypi.python.org/pypi/virtualenv

example_project Documentation, Release 0.1.0

tests/test_dummy.py .

=========================== 1 passed in 0.05 seconds ===========================

The command "py.test" exited with 0.
Done. Your build exited with 0.

Once you set things up, every time you push changes to your project on GitHub TravisCI gets notified and it checks
our a copy of your code into a brand new virtual server, then runs your tests to see that everything is working. If so,
you can post a “badge” on your project README page so folks can see that the project is in good shape. On the other
hand, if your project fails any of the tests you have set up, the badge will show that as well, so potential users of your
code will shy away, or might help you fix things if this is a cool project! Open-source can be fun!

To see your new badge, add these lines to the README file and get it up to GitHub (which will trigger a new build,
by the way!). I like to use reStructuredText markup in my README file, and GitHub formats this nicely for the web
browser.

Example Project
###############

:author: Roie R. Black
:version: 0.1.0

.. image:: https://travis-ci.org/rblack42/example_project.svg?branch=master.

This project is a demonstration of many ``continuous integration`` services
for Python developers.

And, here is my newly issued badge:

That green badge is what developers stay up late at night to see. If the build fails, the badge is red and says “failing”.
Not a good situation to be in when you stop working!

AppVeyor

Another nice free service that can test your application is AppVeyor. This project is unique in that it will deploy and
test your project on a Windows server. If you expect your users to want to run your project on Windows systems, this

1.5. AppVeyor 7

https://github.com/
https://travis-ci.org/
https://github.com/
http://docutils.sourceforge.net/rst.html
https://github.com/

example_project Documentation, Release 0.1.0

service is a must!

Once again, you can use your GitHub credentials to set up an account here.

You need to add a configuration file in the project root, and this is another YAML file. I had some issues building this
file, since it is very picky about spaces use din indenting. Fortunately, there is a appveyor.yml validation page on the
AppVeyor site that will check your file before you push it to GitHub.

Here is the basic file I set up:

1 version: '{build}'
2 environment:
3 matrix:
4 - PYTHON: "C:/Python27"
5 - PYTHON: "C:/Python34"
6

7 init:
8 - git config --global core.autocrlf input
9

10 install:
11 - ps: (new-object net.webclient).DownloadFile('https://bootstrap.pypa.io/get-pip.py', 'C:/get-pip.py')
12 - "%PYTHON%/python.exe C:/get-pip.py"
13 - "%PYTHON%/Scripts/pip.exe install --upgrade setuptools"
14 - "%PYTHON%/Scripts/pip.exe install -r requirements.txt"
15

16 build: False
17

18 test_script:
19 - "%PYTHON%/Scripts/py.test"

Now, when we push changes to the project to GitHub, both TravisCI and AppVeyor will run builds to verify that the
project works properly on both Linux and Windows. (Now, I am wondering if there is a similar service for Macs!)

AppVeyor also creates a badge for your README file. To get the URL for your badge, check on the settings menu
for the project. I added the URL to my README file, and this is the result:

Hey! We are making progress!

8 Chapter 1. Development Services

https://github.com/
http://yaml.org/
https://ci.appveyor.com/tools/validate-yaml
https://github.com/
https://github.com/
https://travis-ci.org/

example_project Documentation, Release 0.1.0

CoverAlls

WHen testing code, one of the metrics we should monitor is the percentage of the code in the project that has been
tested. This is not a complete measure of the quality of the code, but there is an old saying:

If it has not been tested, it does not work!

So, we want to make sure all lines of cod ein the project have been exercised during some test.

There is a nice tool for Python projects that can do this check: coveralls. We install this package by adding another
line to our requirements.txt file:

coveralls==

There is another free service Coveralls.io, that will create a nice report on your coverage statistics.

Landscape

• http://landscape.io/

This is a free service for open-source projects.

PyPi

Version

Downloads

Wheel

Supported Versions

Scrutinizer

ReadTheDocs

Every project needs documentation, and the best projects have excellent user level, and developer level documentation.
Much of the documentation is produced using python Sphinx which is the standard tool used by the Python project
itself.

ReadTheDocs is a web site that will post your documentation for the world to see. All you need to do is generate then
using Sphinx as part of your project on GitHub, then set up ReadTheDocs to pull down new versions every time you
commit changes to your code. (You do update the documentation as well, right?)

Sign up for a free account on ReadTheDocs and use their web menu to set up the project. Make sure you add SPhinx
to your requirememts.txt file:

sphinx==1.2.3

Now, each time you commit changes, your documentation will be updated.

1.6. CoverAlls 9

https://coveralls.io/
http://landscape.io/
http://sphinx-doc.org/
http://sphinx-doc.org/
https://github.com/
http://sphinx-doc.org/

example_project Documentation, Release 0.1.0

Tox

Tox is a command line tool that checks to see if your project works properly with multiple versions of Python. It
will create a virtual environment for designated versions of Python, install your project in those environments, then
run test to make sure everything works. You can use Tox as a standalone tool on your workstation, or have TravisCI
automatically do all of these tests for you.

To use Tox in your project, you add one file, tox.ini to the root of your project. Then, you run the tox command
in that project directory. Here is a starter tox.ini file:

[tox]
envlist = py27, py34

[testenv]
deps=pytest
commands=py.test

This setup assumes that the project is set up to run tests using PyTest, and the script will run the tests using Python 2.7
and Python 3.4.

Putting all this Together

To see how to set all of this up, let’s create a dummy project with all of these services at work to check things. Stand
back, this will involve a bit of work!

Step1: Create the project directory

Step2: Get the project on GitHub

Step3: Add some sample code

Step5: Add a few tests

Step6: Set Up TravisCI

Step7: Set up your Documentation

Step8: Add in ReadTheDocs

Step8: Add in

10 Chapter 1. Development Services

https://travis-ci.org/

CHAPTER 2

Glossary

Acceptance Tests, System Tests, User Tests Testing of the complete application to confirm that it meets the project
specification

Accessor, Mutator Methods that can access a private attribute. These methods control access to the attributes and
can enforce value validation to make sure the attribute is properly constrained.

API, Application Programming Interface A collection of methods that provide the public interface to a subsystem
used in your application.

Assemble, Assembler, Assemblers When we process a program written in Assembly Language, we use a tool called
an assembler to convert the program into machine language the processor actually understands. We compile our
programs.

Assembly Language A human readable form of machine language. An assembler converts code written in this
language into machine language. These languages are processor specific.

Avatar A graphical representation of a user. Often an image, but it can be a cartoon-like character as well. To make
the web more personal (and less anonymous), sites like Gravatar help users show their chosen avatar on many
web sites. I consider this usage part of setting up a professional image.

Baby Step, Baby Steps A software development process that focuses on making very small changes to your code,
followed by a quick test using the compiler to make sure you can run your code, and a run that generates output
you can inspect to see how your changes are working. The key to this is doing this sequence often.

Blasting Code, Blast Code An old school method of software development. This method involves long sessions of
writing code with few attempts to test the code. The result is often long sessions fixing typing mistakes, followed
by long sessions with a debugger trying to figure out why things do not work.

Branch, Branches A fork in the development road where a new feature is developed separate from the main line of
development. Eventually this new line of development will be merged back into the main line.

Camel Case A naming convention where the name is made up of multiple words, each with the first letter capitalized,
and spaces removed. For example: CamelCase.

CAS, Content Addressable File System A scheme used by Git to store documents based on a hash code generated
from a file’s contents. The hash code is used to form a directory name where the file is stored.

Change Script, Change Scripts This is a chunk of code that can be used by an appropriate tool to convert one
product into another one. These scripts are the heart of source code control systems. The Unix tool diff is used
to create such scripts.

Clone Create a copy of files living on a remote server for your local use. This creates a working copy of the project.
You may (or may not) have rights to make changes and push them back up. It is common to clone project hosted
on services like GitHub so you can use the code or study it. You can update your local copy at any time to keep
up with changes in the project.

11

https://en.gravatar.com/
http://git-scm.com/

example_project Documentation, Release 0.1.0

Code of Conduct Every profession has a defined set of rules they expect members of that profession to follow. Most
of the time, these rules are common sense, but they are defined to make sure every member understands what
the profession seeks to present itself to the public. You are expected to know these rules and follow them when
you join the profession. Look into each profession’s primary organization for guidance. For computer folks,
this is probably the Association for Computing Machinery.

Command A series of space-separated text items handed to the operating system. The first of these items is the name
of some program (which may be internal to the operating system) you want to run. The rest of the items are
called parameters which are processed by the program and control exactly what that program does.

Command Line A simple text line on your screen where you can type in a command to the operating system.

Comment, Comments Short chunks of text added to program code that seeks to explain when is going on. Far too
often, this text just repeats what the code actually says, making them useless. Comments should explain the
“why” of a block of code.

Commit, Commits push to a remote server.

Commit, Commits The process of generating a marker that records the state of a project at that moment in time.
SCCS systems generate a change script that can be used to restore your project to the exact form is has at this
moment, even as the project continues on in its development.

Compile, Compiler, Compilers When we process a program written in a high-level programming language, the tool
we use is called a compiler. That tool converts our program into the machine language the processor actually
understands.. We say we compile our programs.

Conflict, Conflicts A situation where two different versions of a single project asset exist. The differences must be
resolved before the asset can continue to exist in the combined project.

Content Addressable File System A system that stores objects with names based on the contents of those objects.
Used by Git internally to store version information.

Context Free A programming language must be defined in such a way that figuring out what should come next
(tokens) can be figured out without studying the context in which the token appears.

Context Menu On most systems, when you right-click on something, you bring up a menu that is sensitive to
the context of the thing you are pointing to. That menu lets you perform tasks common to that thing!

Continuous Integration A testing technique where a project is automatically tested on a number of build systems
to verify that the project is running properly. By testing automatically, developers can spot major problems that
cause errors on specific platforms quickly.

Cookie A small file containing information needed to reconnect you to a web server automatically. Cookies often
store log in credentials. It is vital that you never allow your personal cookies to be saved on a public machine.
Doing so gives others complete access to your accounts. Parameter Parameters A block of text (no spaces
allowed, unless the block is enclosed in quotes) that is passed to a program or a sub-program. If passed to a
program and there are more than one parameter needed, they are usually separated by spaces. If passed to a
sub-program, they are usually separated by commas.

Current This is the flow of electrons through a circuit. Moving electrons generate heat and electromagnetic waves
as a by-product of this motion.

Data Alignment Modern processors work best when data is aligned so that the data item fits in a natural data chunk
the processor will fetch. Misalignment problems occur when a single data item requires two memory accesses
to access.

DDNS, DynDNS, Dynamic DNS A service that updates DNS tables used by Internet services to map domain names
to addresses. These services are helpful if your network address changes often, as it might if you are working
from home and want to set up a server.

12 Chapter 2. Glossary

http://www.acm.org
http://git-scm.com/

example_project Documentation, Release 0.1.0

Debugger A software development tool that is used to step a program one line at a time, then allows the developer
to inspect the internal state of the machine as the program runs. They are a vital, and often under-used tool in
programming.

Decode After the processor has fetched part of an instruction, it decodes that part to determine what additional
information it needs to do its work. If it needs more data from memory, that data will be read from memory into
internal registers. As part of this step, the complete size of the instruction is calculated, and the IP register is
updated to point to the next instruction in memory.

Diff, Difference A tool can read two files and show the differences between them. It can also create a patch file that
can be used to convert one of them into the other.

Directory, Directory Tree The operating system on most computers, today, uses tree-like structure to store files. The
top of this tree, called the root of the tree, is a directory (or folder as Microsoft want us to call it). The name of
this directory is either “/” on a Linux/Mac system, or “” on a Windows system.

A Directory is a container that can hold either files (objects that contain only data, such as text, images, of other
binary data) or other directory objects (called subdirectories). Subdirectories have names that follow the rules
for the operating system. Any directory or subdirectory can hold files of further subdirectories, giving the entire
file system a (upside down) tree-like structure.

DNS, Domain Name Service A phone book like service that maps domain names, like www.pylit.org, to an IP
address.

Domain Name Servers on the Internet are all part of some registered domain, which has a name associated with it. I
own pylit.org for example. The last part is used to brand the kind of domain I am part of, in this case a non-profit
organization. The first part is often chosen to identify the company involved. You can add a machine name to
the front of this name. Often www is tacked on to identify a web server where the companies website is found.

DotFiles Many programs keep settings in a hidden file in the user’s home directory. Exactly what these file hold
depends on the program. It is common to manage these files in some way. I keep mine on my GitHub account
at https://github.com/rblack42/dotfiles.

Drag and Drop A modern method of constructing programs, or executing commands by dragging an icon on the
screen and dropping it onto another place. Learning how all of this works can make you highly productive!

EBNF, Extended Backus-Naur Form A notation used to define the syntax of a programming language. The nota-
tion is designed to be context free meaning there are no places where figuring out what comes next in a program
depends on the context of the program. Usually, the rules can tell what is coming next by simple looking at the
next token in the program

Environment Variable, Environment Variables Named strings managed by the command line processor. These
strings are available to programs and are commonly used to set up data for a variety of purposes.

Execute, Executes, Executable, Executable File In spite of the negative connotations of the term, we say a com-
puter executes a program. The program that can be run is called executable.

Execute, Execution We call the act of actually processing something in a computer executing that something. The
something can be a single Machine Instruction, or a complete program. We are a brutal race of beings, aren’t
we?

Fetch, Fetched Using a special register called an Instruction Pointer (or IP, the processor reaches into the system
memory at the address designated by the IP register and fetches a defined number of bytes which form all or
part of the next Machine Instruction to be processed.

Finite State Machine A system whose operation is defined as a set of states and transitions from one state to the
next.

Flow Chart A form of diagram showing the logic of a program. These diagrams have been around for almost as long
as computers have been available. They are a great way (but not the only way) to visualize how your program
will “flow” and think about what will happen when you run the program.

13

https://github.com/
https://github.com/rblack42/dotfiles

example_project Documentation, Release 0.1.0

Gravatar A service that will provide your image when you log into a number of web sites. That image can be viewed
by others to make sure they recognize the you they are communicating with. I consider using such a service part
of setting up a professional image.

GUI, Graphical User Interface A user interface were the mouse and windows are used to control applications.

Hash, Hash Key A string of characters generated using a has function that is applied to all of the content of some
object. These strings are often used to detect if the object has been altered in any way.

Hidden File Most operating systems “hide” file names that start with a dot ”.”. These normally contain configuration
information that should not be modified unless you know what you are doing You need to use a special command
to display these files when generating a directory list.

High-Level, High-Level Language, High-Level Languages A language designed to be compiled into a low-level
form like machine language is called a high-level language. Such languages are designed to be machine inde-
pendent. C++ is a high-level language.

High-Level Language Most programming languages are designed to help humans instruct a machine in how to
solve some problem. These languages do not care what processor they will run on, and are called machine
independent. You use a compiler designed to convert your high-level code into machine language for a particular
processor. Different compilers support different machines.

Home Directory Most operating systems create a directory you are to use for all of your files on that system. This
directory is tied to the user account you log into when you access that system. On Windows, this is the directory
where your “My Documents” folder is found, usually a place like C:\Users\username. On Linux systems
the directory will be in /home/username. On Macs, it will be in /Users/username.

IDE, Integrated Development Environment, Integrated Development Environments A collection of common
programmer’s tools integrated into a single application with features that can greatly speed up program de-
velopment. Unfortunately, typical IDE systems are complex and may not support all the languages you use, or
be available on all the platforms you use.

Instruction, Instructions, Machine Instruction, Machine Instructions A single instruction that a given processor
can execute is called a machine instruction, or just an instruction. A set of Machine Instructions make up a
Machine Language

Instruction Pointer Processors use a special register to keep track of the address in memory where the next machine
instruction to be processed can be found. This register is called the instruction pointer, or just the IP register.

Integration Tests Tests of a set of units to confirm that they work together properly.

Interrupt, Interrupts, Interrupt Handler Processors normally run programs using a simple four step process called
“Fetch-Decode-Execute-Store”. When the machine is at the point where it is about to fetch another instruction,
a signal can stop the action, and cause the machine to jump to a block of code that handles the signal. The signal
is called an interrupt, since it interrupts the normal flow of a program. The code that deals with the signal is
called an Interrupt Handler. Hopefully, interrupts are short enough that the interrupted program does not notice
the delay!

IP Internet Protocol. This term refers to the “dotted-quad” number assigned to your machine when it is connected to
a standard network. You can determine your “IP number” by running ipconfig on a PC, or ifconfig on either a
Mac or Linux system.

Latency The delay between when an action is started and when it completes. In computing, this is usually measured
in clock cycles.

Link, Linking, Linker A phase in transforming your program into a final executable file where one or more object
files are combined with system libraries‘ to build a final executable file. The tool that does this work is called a
linker.

Literate Programming I form of documentation where program fragments are included in a literate document de-
signed to explain how a program is developed. Those fragments are extracted from the documentation and

14 Chapter 2. Glossary

example_project Documentation, Release 0.1.0

combined into a normal form that can be processed by programming tools. This is the exact opposite of tra-
ditional documentation where the code is littered with comments that try to accomplish the same thing. These
comments are often neglected and become meaningless.

The creator of this concept is Donald Knuth. If you claim to be a software developer, you owe it to yourself to
read his work.

Low-Level, Low-Level Language, Low-Level Languages A language that is very primitive, often tied to a specific
processor. Assembly language and Machine language are low-level languages.

Machine Dependent, Machine Independent Languages are either specific to a processor (low-level languages) or
independent of any processor (high-level languages).

Machine Language, Machine Code The low-level binary language a particular processor understands. Machine
Language is a set of very simple instructions that the processor can execute. These languages are designed by
the processor manufacturer, and are unique to that processor (or processor family). Usually that manufacturer
designs an Assembly Language to go along with their machine language, but you are not required to use that
language. As long as your assembler generates correct machine language, your code can run on that processor.

Master Branch The primary development branch in a project managed with a SCCS.

Master Copy, Master Server Development teams usually set up a server for use by the team. A copy of the project
files is kept on this server and all team members make sure to synchronize their work with this server. We push
your changes to the server, and pull changes down from the server, so we can see work done by other members
of the team. Command Line A simple text line on your screen where you can type in a command to the operating
system.

Merge, Merged Combining two distinct development procedures into one. This may result in conflicts that must be
resolved.

Mock Object, Mock Objects A program component that implements the interface to a complex subsystem suffi-
ciently well to enable testing of code that uses the real subsystem.

NTP, Network Time Protocol, Network Time Synchronization Servers on the Internet with access to very accu-
rate (usually based on atomic vibrations) time signals, keep track of the current time and can report that time
to your system using a simple protocol. Most machines connected to the Internet can be set up to synchronize
their view of the current time with these servers. (The software can even account for the time it takes for those
signals to reach your machine!)

Object file, Object files A file containing machine code for a particular machine, but missing some references needed
to build an executable file. Several object files are combined, resolving the missing references to build a program.
Usually, some of those unresolved references are resolved by searching a system library that accompanies the
transformation tool (compiler) or the operating system. Only when there are no unresolved references can your
program actually execute.

Old School The place where old methods were learned. These methods are any methods not accepted as modern by
current workers.

OOP, Object Oriented Programming A design technique where the fundamental program components model ob-
jects from the real world the application is to serve.

OPC, Other People’s Code You should study code written by other folks, especially those who seem to do the job
well. Eventually, you will learn how to write well respected code and become the author of what others read.
Just make sure you give credit for anything you decide to incorporate into your projects, and respect the license
that goes with the code.

Open-Source An open-source project is freely made available to the public in source code form. Such projects are
usually protected by a license of some kind, designed to protect the rights of the author(s).

OS, Operating System All general purpose machines need a piece of software to manage the hardware of the system.
Typically, these programs provide a user interface to make controlling the machine simple. No on buys a system

15

example_project Documentation, Release 0.1.0

just for the OS. Instead, you pick an OS based on the applications you need to use to do real work (or play) on
that system.

Over-Clock, Over-Clocked It is possible to program the clock on some systems so it runs faster than advertised by
the manufacturer. You might get more speed out of your system by doing this, but you also might reach a point
where the signals are not getting where they need to be in time, and the results are totally unpredictable.

Parameter, Parameters Values passed to a sub-program for it to use in it’s work.

Problem Statement Every programming project should start with a problem statement that you analyze to see exactly
what you are supposed to create. Your job is to create a solution to some problem. You may need to go to the
originator of the statement to clarify things, and you should do this rather than guess at what is really wanted.

Professional Image You have an image on the Web. Like it or not, this image follows you everywhere, even into the
first job interview. Are you proud of that image? May folks post the most outrageous junk on their FaceBook
pages, thinking no one but their “Friends” look at it. Not so! Unfortunately, your potential employer might
check you out and not like what they see. Your choice. I recommend making sure you look like someone others
want to employ, or at least someone who does more with their lives than just keep everyone informed about
every aspect of your life on FaceBook! YMMV!

Provisioning Tool, Provisioning Tools These programs help system administrators install and manage systems by
automating the previously tedious process they used to perform. There are several tools in this category: Puppet,
Chef, and Ansible are all popular open-source today.

Push, Pull When working with an SCCS master server, we push your changes to the server, and pull changes down
from the server, so we can see work done by other members of the team.

Real World A fictitious place everyone claims exists. In this world things work perfectly (or at least better than in
your present world!)

Refactor Modify a programs code to improve its quality without changing how it works. This is a clean-up step in
development designed to keep ugly code out of a project, and use best-practices in how code is presented.

Refactoring Rewriting your code to make it simpler, and easier to understand without changing how it works. Your
regression tests will tell you if you are doing this right!

Register A place inside the processor where data can be stored. There will be a number of such places in each
processor Instead of addresses, these locations will have names. We refer to those names in assembly language
programming.

Regression Test, Regression Tests Testing to make sure a project is moving forward, not backward.

Repo, Repository, Repositories A file system that serves as a database for a source-code control system like Sub-
version or Git.

reStructuredText A simple markup language designed to make documentation readable with no processing. Pro-
cessing tools like SPhinx can turn documents written in this markup into HTML or PDF output that looks very
nice!

Revision, Revisions Another term for version. A revision captures the state of a collection of assets (files) at a
particular moment in time. :term:Source Code Control Systems‘ track the changes from one revision to another
by creating change scripts that can convert the older version to the newer one.

SCCS, Source Code Control System, Source Code Control Systems Distributed Source Code Control Systems A
tool used to track changes to all files involved in a development project. Most such tools use a central server.
The distributed tools can function with no server as long as team members can communicate directly over the
Internet. Typical tools are Subversion and Git

Script Programs designed to control computers are often called scripts. Most scripts are written using simple lan-
guages like bash on a Linux system or Python.

16 Chapter 2. Glossary

http://puppetlabs.com/
https://www.chef.io/
http://www.ansible.com/home
https://subversion.apache.org/
https://subversion.apache.org/
http://git-scm.com/
http://sphinx-doc.org/
https://subversion.apache.org/
http://git-scm.com/

example_project Documentation, Release 0.1.0

Semantic Analysis The process of taking a properly formed construct in a programming language and converting it
into another form the has the same meaning as the original construct. Typically, a tool like a compiler transforms
your high-level code into machine language the processor can actually run.

Semantics A properly written programming language construct causes the computer to do something. Exactly what
that something is is called the semantics of that construct. You must understand the semantics in order to make
sure you use that construct properly. This is called picking the right tool for the job!

Semantics This term refers to the meaning of a construct in a programming language. Only a construct that passes
the syntax analysis phase of transformation has any meaning.

Shell, Command Prompt The “old fashioned” way of controlling a computer. On Windows systems, this involves
opening a window where you can type in commands. On Mac and Linux systems, you open up a Terminal
program.

Side Effects Functions usually operate as self contained blocks of code. They get information from the outside world
through the parameter list, and produce results that are returned to the caller as return values. If the function
modifies anything in the outside world as it performs its task, these are called side effects. Generally, these are
bad things, and should be avoided.

SSD, Solid State Drive Most hard disks use a rotating metal disk coated with a magnetic material that records the
zeros and ones. A modern (and a bit expensive) alternative is to use electronic circuits similar to flash memory,
but much faster, to store the bits. Since these drives are much faster than traditional hard disk drives, some
systems use them to store the operating system, so the machine boots fast. If you have enough money, an SSD
might be the only drive you have.

State, States The exact configuration of a collection of items that make up some system. That set of items can grow
or shrink over time, and individual items may be changed. At any moment in time, the entire collection is in
some configuration.

The operation of many systems can be described exactly by a sequence of specific changes from one state to the
next. Such a system is called a Finite State Machine.

Store, Retire, Retirement Once a single Machine instruction has been completed, any new data produced by that in-
struction needs to be written to a final storage location, clearing the processor to move on to the next instruction.
We say we store that data, or retire the instruction.

Style Guide A document specifying the style to be used to projects in some organization. These guides lay out how
program code should be presented, how variable names are formed, or how files should be organized to meet
standards everyone in the organization will follow. Some of these guides can be extensive, others, very informal.

Syntax The formal rules that define how to write a construct in a particular programming language. These rules are
simple and precise.

Syntax This is a term referring to exactly what a statement in a programming language looks like when written in a
program.

Syntax Analysis, Syntax Analyzer The process of examining each construct in your program to make sure it is
properly formed. Only when this is true can the analysis tool move on the semantic analysis to figure out what
each construct means. The tool that checks the syntax is called a syntax analyzer, usually part of a compiler.

Syntax Diagram, Railroad Diagram A visual representation of a rule in EBNF. These rules define the syntax of a
language.

System Clock The master timing device on all computers. The processor uses the clock to synchronize the execution
of machine instructions.

System Library A file containing references needed by programs to connect to operating system of language specific
functions.

System path Most operating systems search for files to execute by examining directories listed in a system variable
called the PATH.

17

example_project Documentation, Release 0.1.0

Tag, Tags A special marker used to identify particular revisions in a software development process.

TDD, Test Driven Development A software development process where any change to the code is preceded by the
creation of a test that will demonstrate the operation of the code after the change is made. The development
process becomes one of generating code that passes the test.

Test Driven Design A fictitious design technique where we practice TDD with no design in mind. This might be
a bottom-up technique where interesting subassemblies get produced that might be useful in a larger project.
Basically, this seems like a bad idea.

Texas Four-Step All computer processors use a four step process to do their work. The four steps are called Fetch,
Decode, Execute, and Store (or Retire.

Token, Tokens In syntax analysis, your program is broken up into a number of tokens, a term describing one item
that is “indestructible” in the language. For example the keyword “if” is a single token, so is an integer number,
or a curly bracket, or the “>>” symbol used in C++.

Unit, Unit Test, Unit Tests A unit is a basic component of a program. Typically this is one function or a class. We
test these units to verify that they work as we intend.

Unresolved Reference, Unresolved References When you try to link your program and there are references to items
that cannot be found, we say these are unresolved references. The final executable file cannot be constructed in
this case. System Library System Libraries Files containing code needed by a program to actually complete the
transformation of a high-level language into machine language. In these libraries, we find code for input and
output, code needed to interface with the operating system, etc.

URL, Uniform Resource Locator The specific location of a web “resource”, which is normally a web page, but can
be a file or anything that your browser can download to your system using the web protocol named HTTP.

VirtualHost A configuration used by Apache to manage web servers controlling multiple websites

VM, virtual machine, virtual machines A program that emulates a real machine accurately enough to run real
programs for that machine.

VM, Virtual Machine A program running on a host computer that emulates a real machine well enough that operat-
ing systems and applications can run inside them. This effectively isolates the environment inside the VM from
the host computer.

Voltage This is a measure of the “force” driving electricity through a circuit. Think of pressure in a water pipe.

VPS, Virtual Private Server A virtual machine set up on a remote server in such a way that a user can use the VM
as a private serer. This arrangement is commonly used by companies to make more effective use of physical
servers. Multiple VPS systems can run on one physical machine. Companies like Rackspace and Amazon offer
access to such systems.

Working Copy, Working Copies When using an SCCS system, the copy maintained on a remote server is usually
treated as a master copy. Any local copies are called working copies. When you leave any work session, you
should try to make sure the remote and working copies are identical. This will prevent problems later!

WSGI, Web Server Gateway Interface A standard protocol used to host Python applications on web servers

18 Chapter 2. Glossary

http://httpd.apache.org/
http://www.rackspace.com/
https://aws.amazon.com/

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

19

example_project Documentation, Release 0.1.0

20 Chapter 3. Indices and tables

Index

A
Acceptance Tests, 11
Accessor, 11
API, 11
Application Programming Interface, 11
Assemble, 11
Assembler, 11
Assemblers, 11
Assembly Language, 11
Avatar, 11

B
Baby Step, 11
Baby Steps, 11
Blast Code, 11
Blasting Code, 11
Branch, 11
Branches, 11

C
Camel Case, 11
CAS, 11
Change Script, 11
Change Scripts, 11
Clone, 11
Code of Conduct, 12
Command, 12
Command Line, 12
Command Prompt, 17
Comment, 12
Comments, 12
Commit, 12
Commits, 12
Compile, 12
Compiler, 12
Compilers, 12
Conflict, 12
Conflicts, 12
Content Addressable File System, 11, 12
Context Free, 12

Context Menu, 12
Continuous Integration, 12
Cookie, 12
Current, 12

D
Data Alignment, 12
DDNS, 12
Debugger, 13
Decode, 13
Diff, 13
Difference, 13
Directory, 13
Directory Tree, 13
DNS, 13
Domain Name, 13
Domain Name Service, 13
DotFiles, 13
Drag and Drop, 13
Dynamic DNS, 12
DynDNS, 12

E
EBNF, 13
Environment Variable, 13
Environment Variables, 13
Executable, 13
Executable File, 13
Execute, 13
Executes, 13
Execution, 13
Extended Backus-Naur Form, 13

F
Fetch, 13
Fetched, 13
Finite State Machine, 13
Flow Chart, 13

G
Graphical User Interface, 14

21

example_project Documentation, Release 0.1.0

Gravatar, 14
GUI, 14

H
Hash, 14
Hash Key, 14
Hidden File, 14
High-Level, 14
High-Level Language, 14
High-Level Languages, 14
Home Directory, 14

I
IDE, 14
Instruction, 14
Instruction Pointer, 14
Instructions, 14
Integrated Development Environment, 14
Integrated Development Environments, 14
Integration Tests, 14
Interrupt, 14
Interrupt Handler, 14
Interrupts, 14
IP, 14

L
Latency, 14
Link, 14
Linker, 14
Linking, 14
Literate Programming, 14
Low-Level, 15
Low-Level Language, 15
Low-Level Languages, 15

M
Machine Code, 15
Machine Dependent, 15
Machine Independent, 15
Machine Instruction, 14
Machine Instructions, 14
Machine Language, 15
Master Branch, 15
Master Copy, 15
Master Server, 15
Merge, 15
Merged, 15
Mock Object, 15
Mock Objects, 15
Mutator, 11

N
Network Time Protocol, 15
Network Time Synchronization, 15

NTP, 15

O
Object file, 15
Object files, 15
Object Oriented Programming, 15
Old School, 15
OOP, 15
OPC, 15
Open-Source, 15
Operating System, 15
OS, 15
Other People’s Code, 15
Over-Clock, 16
Over-Clocked, 16

P
Parameter, 16
Parameters, 16
Problem Statement, 16
Professional Image, 16
Provisioning Tool, 16
Provisioning Tools, 16
Pull, 16
Push, 16

R
Railroad Diagram, 17
Real World, 16
Refactor, 16
Refactoring, 16
Register, 16
Regression Test, 16
Regression Tests, 16
Repo, 16
Repositories, 16
Repository, 16
reStructuredText, 16
Retire, 17
Retirement, 17
Revision, 16
Revisions, 16

S
SCCS, 16
Script, 16
Semantic Analysis, 17
Semantics, 17
Shell, 17
Side Effects, 17
Solid State Drive, 17
Source Code Control System, 16
Source Code Control Systems, 16
SSD, 17

22 Index

example_project Documentation, Release 0.1.0

State, 17
States, 17
Store, 17
Style Guide, 17
Syntax, 17
Syntax Analysis, 17
Syntax Analyzer, 17
Syntax Diagram, 17
System Clock, 17
System Library, 17
System path, 17
System Tests, 11

T
Tag, 18
Tags, 18
TDD, 18
Test Driven Design, 18
Test Driven Development, 18
Texas Four-Step, 18
Token, 18
Tokens, 18

U
Uniform Resource Locator, 18
Unit, 18
Unit Test, 18
Unit Tests, 18
Unresolved Reference, 18
Unresolved References, 18
URL, 18
User Tests, 11

V
Virtual Machine, 18
virtual machine, 18
virtual machines, 18
Virtual Private Server, 18
VirtualHost, 18
VM, 18
Voltage, 18
VPS, 18

W
Web Server Gateway Interface, 18
Working Copies, 18
Working Copy, 18
WSGI, 18

Index 23

	Development Services
	GitHub
	virtualenv
	PyTest
	TravisCI
	AppVeyor
	CoverAlls
	Landscape
	PyPi
	Scrutinizer
	Tox
	Putting all this Together

	Glossary
	Indices and tables

